Parameterized Complexity of Sparse Linear Complementarity Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse solutions of linear complementarity problems

This paper considers the characterization and computation of sparse solutions and leastp-norm (0 < p < 1) solutions of the linear complementarity problems LCP(q,M). We show that the number of non-zero entries of any least-p-norm solution of the LCP(q,M) is less than or equal to the rank of M for any arbitrary matrix M and any number p ∈ (0, 1), and there is p̄ ∈ (0, 1) such that all least-p-norm...

متن کامل

Sparse Parameterized Problems

Sparse languages play an important role in classical structural complexity theory. In this paper we introduce a natural definition of sparse problems for parameterized complexity theory. We prove an analog of Mahaney’s theorem: there is no sparse parameterized problem which is hard for the tth level of the W hierarchy, unless the W hierarchy itself collapses up to level t. The main result is pr...

متن کامل

Improved infeasible-interior-point algorithm for linear complementarity problems

We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...

متن کامل

Parameterized Complexity of Geometric Problems

This paper surveys parameterized complexity results for NP-hard geometric problems. Geometric problems arise frequently in application domains as diverse as computer graphics [19], computer vision [4, 35, 43], VLSI design [64], geographic information systems [73, 30], graph drawing [72], and robotics [65, 37], and typically involve (sets of) geometric objects, such as, points, line segments, ba...

متن کامل

Matrix Linear Complementarity Problems

We consider the expected residual minimization formulation of the stochastic R0 matrix linear complementarity problem. We show that the involved matrix being a stochastic R0 matrix is a necessary and sufficient condition for the solution set of the expected residual minimization problem to be nonempty and bounded. Moreover, local and global error bounds are given for the stochastic R0 matrix li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithmica

سال: 2016

ISSN: 0178-4617,1432-0541

DOI: 10.1007/s00453-016-0229-5